Part 3

Spacetime Model



In Part 2, we have already studied two interactions, the e+e- pair production by a gamma, and the opposite effect, the e+e- annihilation. Since all components are made up of spacetime, it is possible that other interactions follow the same rule as the e+e- production or annihilation.

This page covers basic interactions to establish a guideline.


Guiding principles

According to the first principle of duality pointed out in Part 2: What is Matter?. Any EM wave may be transformed into a particle and conversely. We must always keep in mind that

Particles do not come from a vacuum
but from spacetime movements

For example, the following figure shows the creation of six quarks, three u and three u bar, an e+e- pair, and a residual gamma. All these components may be created at the same time from spacetime movements, or gammas.

In this example, the most probable scheme is the creation of a proton-antiproton pair. However, any other particles may be created. Of course, we must have the same quantity of electrons-positrons before and after the interaction, including the gammas. Finally, the incoming gammas provide many possible combinations.

The same principle may be applied in high-energy interactions. The particles' jets come from spacetime movements produced by the particle collision.

The reciprocal interaction is also possible: some particles decays in gammas, according to Feynman's diagrams

In our example, the creation of three u/u bar quarks requires the presence of two positrons-electrons very close to each other. The particles are created mainly due to energy, but the proximity should probably also be taken into account.

interactions- Standard Model
susy- Standard Model

This means that any heavy particles (SUSY...) may exist and will probably be discovered in the future since all particles are made of spacetime.

Note: This new way to consider that, in the universe, we have only three components, electrons, positrons and sCells, does not change the current formulas in quantum mechanics or QED/QCD.


Formulation (proposal)

This document contains many schematics for teaching purposes. However, sooner or later, it will be necessary to classify particles according to the Spacetime Model. In this way, it would be useful to have a simple method of representing the internal structure of the basic components, electrons, positrons, quarks...

The following scheme can be used. The basis particles are e+, e-, u, ubar, d and d dbar. A parenthesis means an electron or a positron is surrounding the other basic particles. Of course, parenthesis must go in pairs. For example:

  • d quark = (u) e-
  • Proton = (u, u, u) e-
  • Neutron = ((u, u, u) e-) e-
  • Antiproton = (u bar, u bar, u bar) e+
  • etc...

The particles that surround the others are electrons and positrons. They act as the "strong nuclear force". Since this force is necessary in any composite particle, meson, baryons..., we can state the following rule: All composite particles must have at least one parenthesis pair. It means that:

All composite particles must have
at least one electron or positron

Or, translated to nuclei:

All nuclei must have
at least one neutron

The necessity to have an electron or positron surrounding other particles probably explains why we do not see any proton in the halo in atoms with halo. The latter is built with neutrons (i.e. protons + electrons) only. This new theory also explains the instability of the Li3.